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Abstract 

In this paper we explore and discuss the learning and generalization characteristics of the random vector 
version of the Functionaldink net and compare these with those attainable with the GDR algorithm. This is 
done for a well-behaved deterministic function and for real-world data. It seems that 'overtraining' occurs 
for stochastic mappings. Otherwise there is saturation of training. 
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1. Introduction 

Of all the capabilities ascribable to neural-net computing, there is none more noteworthy 
than that of supervised learning. The work of Hornik, Stinchcombe and White [1], Funahashi 
[2] and Cardaliaguet and Euvrard [3] indicate that the multi-layer generalized PERCEPTRON 
feedforward net with linear links and appropriate nonlinear activation at nodes can serve as a 
computational model of functional mappings f ( x )  from R N to R. Such existence theorems 
do not address issues such as learning and generalization, and different approaches to those 
matters can be adopted with correspondingly different results in practice. 

In the past, we have explored variations [4, 5] on the feedforward net architecture, inspired 
primarily by the work of Giles and Maxwell [13] on high-order neural networks. Our idea is 
that often it might be helpful to abstract and replace substantial parts of an otherwise massive 
net with use of Functional-links. Functional-link (FL) nets can be implemented in various 
ways, one of which is the random vector (RV) approach [7, 8]. This paper is concerned with 
the learning and generalization characteristics of the random-vector implementation of the 
FL net. These are described and discussed comparatively with corresponding characteris- 
tics of the backpropagation-of-error (BP) [9] net for two types of situations; one for which a 

* Corresponding author. Fax: 1 216 368 2668. 

0925-2312/94/$07.00 (~) 1994 - Elsevier Science B.V. All rights reserved 

user
Textbox
This paper presents randomization of input weights followed by closed-form solution by pseudo-inverse (the same as Moore-Penrose generalized inverse) for output weights on page 167. There are several follow-up works in this direction. All these were  excluded in the ELM-SLFN paper in 2004 (PDF: Huang IJCNN 2004)  

user
Textbox
The only difference between ELM-SLFN and RVFL is that RVFL has direct links from the input to the outputs. This removal makes ELM-SLFN worse than RVFL.



164 Y. -H.  Pao et al. 

deterministic causal mapping does exist and another involving real world noisy data. In this 
work the BP net is also referred to interchangeably as the generalized delta rule (GDR) net. 

In the neural-network supervised learning task, the generic idea is that such a net can 
synthesize a network computational model of a known function if that function does indeed 
exist. The learning procedure is based on a finite number of known instances of the presumed 
functional mapping, and it is assumed and hoped that the computational network model so 
learned is not only capable of replicating the known instances of the mapping but is also valid 
for the infinitude of all the other points in the neighborhoods of the exemplars. 

In practice many things can go awry. For example, there may be, in fact, no deterministic 
function and the exemplars might be merely a set of random pairings of points. In such a 
case the training set of  mappings can still be learned very well, but any test set will exhibit 
the random scatter inherent to the stochastic process used to generate the data. If a net 
does not have enough available adjustable parameters or if the learning process is terminated 
prematurely, then both the training set and test set errors may be large. On the other hand if 
the net has too many adjustable parameters or if the net is over-trained, then the training set 
error may be deceptively low without comparable performance attainable for the test set points. 

2. Brief review of  the random vector Functional-link approach 

The basic GDR concept is illustrated in Fig. l(a) for a mapping from an N-dimensional 
space to K-dimensional space. There are J nodes in the hidden layer and the action of the 
net may be understood in terms of two successive mappings or transformations. The action 
of the initial mapping, from the input to the hidden layer, is to transform the description of the 
input pattern vectors from the original one in input space into another description in internal 
representation space. In that new representation, the next mapping is a linear one. In the 
GDR or BP approach, all the network parameters are successively adjusted until the known 
mappings are replicated to the desired accuracy for all the vector parts provided as the training 
set. 

The random-vector FL network shown in Fig. l(b) performs a nonlinear transformation of 
the input pattern before it is fed to the input layer of the network. The essential action is, 
therefore, the generation of an enhanced pattern to be used in place of the original. Experience 
indicates that supervised learning can be achieved readily using a flat net (one that has no 
hidden layers), and that the delta rule can be used in place of the generalized delta rule (GDR) 
if this enhancement is done correctly. 

The random-vector FL net is but one specific mode of realization of the general Functional- 
link net idea. Other modes ofinstantiations of that approach have been described and discussed 
by us elsewhere in previous publications [4-7], but the random-vector version is attractive 
because it is susceptible to rigorous mathematical proof [14] and also because it is easy to 
use. In connection with the latter comment, we note that even though a large number of 
enhancement nodes might be generated initially, usually a large fraction of those candidate 
enhancement nodes can be pruned away if they, individually, do not contribute to the net 
input of the output nodes, or sometimes, depending on the circumstance, if a node does not 
contribute to discrimination between classes. 

The network connectivities shown in Fig. 2(a) and (b) are similar to those of Fig. 1, ex- 
cept for the fact that we focus on a single output and do not require a nonlinear transform at that 
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Fig. 1. Comparison of network connectivities. 

final output. This allows us to illustrate explicitly some of the entities to be learned and there 
is no loss of generality. 

To be specific for the GDR net, the input to each hidden layer node is netj = ~ a j n Z n  = 
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a~ x and the output is g(a~ x + bj) where bj is the threshold parameter for the node j and g(.) is 
the sigmoid function. The net to the single (nonlinear) output is simply ~ ~./g(a~x + b.~). In 
the random-vector FL net, the functional enhancements are achieved in essentially the same 
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manner as in the first layer of the GDR net. The additional enhancements are g(atjx + bj). 
The random-vector implementation of the FL net can be viewed as essentially the same as 
the GDR except for the fact that the hidden layer is moved down to serve as an enhancement 
of the input vector and the weights vectors {aj} are not learned but are randomly generated 
(but appropriatelyl). The random-vector implementation can also be viewed as a type of 
encoding comparable to the coarse-coding of patterns with linguistic symbolic feature values 
[10]. A mapping from N-dimensional space to K-dimensional space is represented by K 
independent networks and each network can be modified adaptively without entanglement 
with the others. 

3. Learning and generalization characteristics 

For the random-vector FL net, only the weights flj need to be learned. Including the original 
inputs, there are (N + J)  components in the enhanced pattern and there are accordingly (N + J)  
weights (or/Sj values), to be determined. 

Learning is by minimization of the system error defined as 

1 P 
E = 2P ~ (t(p) - Btd(p))2 

p=l  

where B t is the vector of weight values flj, j = 1 ,2 ,3 ,  ..., N + J ,  and d is the enhanced 
pattern vector (not the original input pattern vector). There are P training set patterns and the 
subscript (p) is the pattern index. 

E is quadratic with respect to the (N + J)  dimensional vector B .  This means that the 
unique minimum can be found in no more than N + d iterations of a learning procedure such 
as the conjugate gradient (CG) approach [11, 12], if the explicit matrix inversion needs to 
be avoided. If matrix inversion with use of a pseudo-inverse is feasible, then a single step 
learning would suffice. 

In this paper, we report on the learning and generalization characteristics of the random- 
vector FL net for two different circumstances, one being that of a deterministic R t to R 1 
mapping and the other being a mapping for noisy real-worM data. 

A well-behaved continuous function might be that shown as f l (x )  in Fig. 3. However, 
the circumstance is that the function f l (x)  is known to us only through the point marked 
with bold dots. As we will describe in further detail in the following, the function f2(x) is 
another function, learned in error by the GDR net if training is terminated prematurely. As 
shown in Fig. 4, the FL net can achieve satisfactory learning of the training set points if 300 
enhancements are used. A system error of 0.000025 is attained after 12,065 iterations. The 
net is a fiat net, i.e. a linear net. We did not use the CG approach partly because we want the 
FL and GDR net results to be comparable and also because of simplicity in the straightforward 
gradient iterative approach. 

In generalization mode the performance of the FL net is not bad, as illustrated in Fig. 5. 
Comparable learning is achieved by a GDR net with 20 hidden layer nodes. The accuracy 

1The vector a~ needs to Ix: constrained so that activation functions g(a)x + bj ) arc not saturated most of the 
time. 
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In the preceeding discussion, we have endeavored to present a picture of the learning and 
generalization capabilities of the random-vector FL net as compared with those of the GDR 
net for a single well-behaved function which exists and is known to us, even though not known 
to the nets. Under such circumstances, we do not have the phenomenon of overtraining but 
only that of  saturation of training. The magnitude of estimation errors in generalization mode 
cannot be reduced further without improving the quality of the training set. 

The situation is different for real-worM data where the functional mapping to be learned 
is stochastic. For those cases we can have overtraining and actually worsen the accuracy of 
estimated values as we increase the degree of training. 

We illustrate some aspects of such situations with use of one instance of a real-world 
learning task. For that real-world task, one aspect of the overall training task could be viewed 
as learning a mapping from R 4 to R 1. The training set consisted of 28 input patterns with 
corresponding outputs. These are listed in Table 1. The test set of 10 patterns is also described 
in Table 1. 

The training and generalization capabilities achieved by the GDR and FL nets are illustrated 
in Figs. 13 and 14 respectively. In Fig. 13, we see that for the FL net, there is not much point 
in going beyond about 500 iterations. There is indeed a slight deterioration in consulting 
capability as we overtrain but the deterioration is minor. 

In the case of the GDR net, it is encouraging to note that training should probably be 
stopped after 1000 iterations, at which point the generalization quality is about twice as good 
as that of  the FL net. But if this is not monitored, then the performance of  the generalization 
mode deteriorates due to overtraining and the performance becomes about only half as good 
as that of the FL net. 
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Table 1. Training and consulting sets (patterns are obtained from practical chemical 

data). 

Set 
# X1 X2 ~(3 X4 Y 

1 1.25 1 1.25 1.25 23.2 
2 2 1.75 3 1.75 17.4 
3 2 1.75 5.16 1.75 13.7 
4 2 1.75 0.84 1.75 24.5 

5 2 1.75 3 3.05 22.7 
6 2 1.75 3 0.45 7.8 
7 2 3.05 3 1.75 16.5 
8 2 1.75 3 1.75 17.3 
9 2 1 1.75 2.5 22.6 

10 2 1 3.75 1 11.7 
l l  2 2.5 1.75 1 15.4 

12 2 2.5 1.75 2.5 22.7 
13 2 2.5 3.75 2.5 18.3 
14 2 2.5 3.75 1 10.7 
15 2 0.45 3 1.75 16.2 
16 2 1.75 3 1.75 16.2 
17 1.75 2 2.75 2 18.5 

18 1.75 1 2.75 1 15 
19 0.75 2 2.75 1 17.7 
20 0.75 1 2.75 2 25.5 

21 1.25 1.5 2 1.5 20 

22 2.25 1.5 2 1.5 16.6 
23 0.25 1.5 2 1.5 33.8 
24 1.25 0.5 2 1.5 23.5 
25 1.25 1.5 2 2.5 25.1 
26 1.25 1.5 0.5 1.5 23.8 

27 1.25 1.5 3.5 1.5 16.1 
28 1.25 1.5 2 1.5 19.5 

Consultin Set 
# X1 X2 X-3 X4 Y 
1 2 1.75 3 1.75 16.7 
2 2 1 1.75 1 15.8 
3 2 1 3.75 2.5 19.2 
4 1.25 1 1.25 1.25 22.2 
5 1.75 2 1.25 2 22.2 
6 1.75 1 1.25 1 19.2 
7 0.75 2 1.25 1 23.7 
8 0.75 1 1.25 2 32.8 
9 1.25 2.5 2 1.5 19.7 
10 1.25 1.5 2 0.5 13 
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4. Concluding remarks 

The objective of this paper is to promote increased understanding of some related matters 
in the general topic area of learning and generalization. Some of these are listed in the 
following: 

(1) Adequacy of the feedforward net architecture does not imply that the GDR approach 
must be used in training. Other variations exist. 

(2) Even in the absence of noise, estimation errors in generalization mode are generally not 
as small as those attained for the training set. 

(3) In the absence of noise, generalization errors are due to inadequacy by interpolation or 
extrapolation and cannot be reduced by further training. They can be reduced by increase 
in the quality of the training set, such as making the exemplars more representative of 
the behavior of the function to be learned. 

(4) For real-world data with usually a stochastic element in the function, overtraining can 
occur. Overtraining is aggravated through increase in the number of parameters made 
available or through use of excessive number of adaptive iterations in training. 

(5) The random-vector FL net trains simply and rapidly and is guaranteed to converge to the 
optimal solution in a known number of iterative steps. 

Postscript 

Rigorous justification of the random-vector functional-link approach has since been oh- 
mined by B. Igelnik and Yoh-Han Pao. Part of that justification is presented in "Additional 
perspectives on feedforward neural-nets and the Functional-link", by B. Igelnik and Yoh-Han 
Pao, IJCNN'93, Nagoya, Japan (Oct. 1993) [14] with additional material in [15] and [16]. 

Appendix 1. Observations on rapid convergence attainable with the random vector 
FL net 

A typical RV Functional-link net is depicted in Fig. 2(b) of text. It is useful and important to 
note that the output of an augmentation node is a scalar, but that scalar is a function of the entire 
input pattern vector. In a function mapping R n --+ R, the output is o = ~ ~jg(a)x + bj). 

In practice, we have the original vector components as well as the augmentation nodes. In 
the interest of simplicity in representation we do not distinguish between the two different 
types of input nodes in the following formalism. That is, all the weights are denoted fij, each 
one of which weights the output of the corresponding node j and all of the weighted values 
are summed to yield the output. 

The scalar output o is computed as o = B t d ,  where 

S = [ ~ 1 / ~ 2  . . .  ~ N + J ]  t , 

d = [~1 ~2 ... 6N+J] t .  

and 
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The symbol J denotes the total number of augmentation nodes and N denotes the number of 
components of the original input vector. 

For the augmentation nodes, /~m = g(netm) for m = N + 1, ..., N + J where net~ = 
a m l x  1 + ... + a m N X N  + bm = a t~x  + bin, 

t am = [aml, am2, ..., amN] t , and 

= [x l ,x2 ,  x 3 , . . . , x N :  • 

The am,  bm parameters are selected at random but are scaled to avoid saturation of g(.). 

For pattern x(p) we get net~ ) = a ~ x  (p) + bin, ~f~ ) = g(net~ )) and o(p) = B t d  (p). 
For a given set of  input and target data pairs {x(P),t(P)}, p = 1,2, . . . ,P ,  the task is 

to determine (learn) unknown /3 parameters. The learning process can be posed as an 
optimization problem, where the criterion function E defined as 

1 P 
E = ( t ( P ) -  Bta (P) )  2 

p = l  

is to minimized. 
We observe that equations t(l) = B t d  O) = ( d O ) ) t B ,  t (2) = B t d  (2) = ( d ( 2 ) ) t B ,  . . . ,  

t(p) = B t d  (P) = ( d ( P ) ) t B c a n b e w r i t t e n i n a c o m p a c t f o r m a s t  V B w h e r e t  = [t(D,t(2), 
..., t(P)] t and V = [(d(1)) t, (d(2)) t, ..., (d(P))t] t so that criterion E can be expressed as 

E= vpl ( t -  VB) t ( t -  VB) 

The gradient is accordingly 

OE 1 v t ( t  _ V B )  r - O ~ - - - -  f 
and the learning process can be written as 

Vt(t- VB°id), B new = B °id + 

where 7/is used to minimize E in the r direction. 
Search for an optimal B* in the negative direction of the gradient of E is usually efficient 

for a quadratic E function but there is some waste motion due to the zig-zagging nature of 
the search process. 

The waste motion can be eliminated with use of the Conjugate Gradient (CG) method, a 
first-order indirect optimization process. That method uses gradient information for finding 
better directions for search. In all cases of quadratic optimization the system optimum can 
be reached in a finite number o f  iterations but the CG method guarantees convergence in a 
specific predetermined number of operations. 

According to the CG methodology, the parameter update is defined by 

B new = B °ld + r l s  . 

Directions of search s are computed at every point b(') as 
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for , ~ = 0 ,  s ( ° ) = - r  (°) 

and ) ~ = K ,  B (i¢)isoptimum, K _ < N + J .  

In Fig. A.1, we demonstrate graphically the difference which occurs during the minimization 
of a quadratic function of two variables (M = 2) using the directions of search 

(a) along the negative gradient of the criterion function E or 
(b) along the direction computed according to the CG methodology. 
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